Highlights
- •This study characterized natural forearm and wrist behavior during daily activities
- •Subjects spent 50% of time in the central 20% of their functional range of motion
- •Most movements were slow, and movement speed dropped off exponentially
- •Subjects often merged dart-thrower's motion with twist from pronation to supination
- •Importance of dart-thrower's motion may derive from the hand-to-mouth movement
Abstract
Background
During activities of daily living, the main degrees of freedom of the forearm and
wrist—forearm pronation-supination (PS), wrist flexion-extension (FE), and wrist radial-ulnar
deviation (RUD)—combine seamlessly to allow the hand to engage with and manipulate
objects in our environment. Yet the combined behavior of these three degrees of freedom
is relatively unknown.
Purpose
To provide a characterization of natural forearm and wrist kinematics (joint configuration,
movement direction, and speed) during activities of daily living.
Study design
This is a descriptive cross-sectional study.
Methods
Ten healthy subjects performed 24 activities of daily living chosen to represent a
wide variety of activities, while we measured their PS, FE, and RUD angles using electromagnetic
motion capture. The orientation of the forearm and wrist was represented in the three-dimensional
“configuration space” spanned by PS, FE, and RUD. From the time course of forearm
and wrist orientation in configuration space, we extracted three-dimensional distributions
of joint configuration, movement direction, and speed.
Results
Most joint configurations were focused in a relatively small area: subjects spent
roughly 50% of the time in the central 20% of their functional range of motion. Some
movement directions were significantly more common than others (p < 0.001); in particular, the direction of the dart-thrower's motion (DTM) was about
three times more common than motion perpendicular to it. Most movements were slow:
the likelihood of moving at increasing speeds dropped off exponentially. Interestingly,
the most common high-speed motion combined the DTM with a twist from pronation to
supination. As this motion allows one to pick up an object in front of one's body
and bring it to the head, it is essential for self-care. Thus, although many activities
of daily living follow the DTM without significant forearm rotation, the greatest
importance of the DTM may lie in its combination with forearm rotation.
Conclusions
Despite the wide variety of activities, we found evidence of preferred movement behavior,
and this behavior showed significant coupling between the wrist and forearm.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Hand TherapyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Functional disability of the wrist: direct correlation with decreased wrist motion.J Hand Surg Am. 2008; 33A: 485-492
- Functional kinematics of the wrist.J Hand Surg Eur Vol. 2016; 41: 7-21
- Functional wrist motion - a biomechanical study.J Hand Surg Am. 1985; 10A: 39-46
- Functional range of motion in the upper extremity and trunk joints: nine functional everyday tasks with inertial sensors.Gait Posture. 2019; 70: 141-147
- Three-dimensional motion of the upper extremity joints during various activities of daily living.J Biomech. 2010; 43: 2915-2922
- Functional ranges of motion of the wrist joint.J Hand Surg Am. 1991; 16A: 409-419
- A biomechanical study of normal functional wrist motion.Clin Orthop Relat Res. 1984; : 23-25
- Normal range of motion of joints in male-subjects.J Bone Joint Surg Am. 1979; 61: 756-759
- In vivo radiocarpal kinematics and the dart thrower's motion.J Bone Joint Surg Am. 2005; 87A: 2729-2740
- The mechanical axes of the wrist are oriented obliquely to the anatomical axes.J Bone Joint Surg Am. 2011; 93A: 169-177
- Unifying model of carpal mechanics based on computationally derived isometric constraints and rules-based motion - the stable central column theory.J Hand Surg Eur Vol. 2014; 39: 353-363
- Scaphoid and lunate motion during a wrist dart throw motion.J Hand Surg Am. 2004; 29: 418-422
- Coupling between wrist flexion-extension and radial-ulnar deviation.Clin Biomech. 2005; 20: 177-183
- Wrist kinematic coupling and performance during functional tasks: effects of constrained motion.J Hand Surg Am. 2014; 39: 634-642.e631
- In-vivo confirmation of the use of the dart thrower's motion during activities of daily living.J Hand Surg-Eur Vol. 2014; 39: 373-378
- Orthotic intervention incorporating the dart-thrower's motion as part of conservative management guidelines for treatment of scapholunate injury.J Hand Ther. 2016; 29: 199-203
- Simulated radioscapholunate fusion alters carpal kinematics while preserving dart-thrower's motion.J Hand Surg Am. 2008; 33A: 503-510
- Dart-throwing motion with a twist orthoses: design, fabrication, and clinical tips.J Hand Ther. 2016; 29: 205-211
- An anatomic and kinematic analysis of a new total wrist arthroplasty design.J Wrist Surg. 2015; 4: 121-127
- User surveys support designing a prosthetic wrist that incorporates the Dart Thrower's Motion.Disabil Rehabil Assist Technol. 2019; 14: 312-315
- Relative contributions of the midcarpal and radiocarpal joints to dart-thrower's motion at the wrist.J Hand Surg Am. 2018; 43: 234-240
- A technique for quantifying wrist motion using four-dimensional computed tomography: approach and validation.J Biomech Eng. 2015; 137: 0745011-0745015
- ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion - Part II: shoulder, elbow, wrist and hand.J Biomech. 2005; 38: 981-992
- Electromagnetic tracking in the clinical environment.Med Phys. 2009; 36: 876-892
- Tracking joint angles during whole-arm movements using electromagnetic sensors.J Biomech Eng. 2019; 142: 074502
- Mathematical Methods and Algorithms for Signal Processing.Prentice Hall, Upper Saddle River, NJ2000
- CircStat: a MATLAB toolbox for circular statistics.J Stat Softw. 2009; 31: 1-21
- Upper extremity orthoses.in: Radomski MV Latham CAT Occupational Therapy for Physical Dysfunction. 6th ed. Lippincott Williams & Wilkins, Baltimore, MD2008: 421-464
- A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study.NeuroRehabilitation. 2008; 23: 81-87
- A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES.J Neuroeng Rehabil. 2013; 10: 112
- Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning.IEEE Trans Neural Syst Rehabil Eng. 2012; 20: 268-275
- Frequency spectrum analysis of wrist motion for activities of daily living.J Orthop Res. 1989; 7: 304-306
- Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus.Proc Nat Acad Sci USA. 2014; 111: 5718-5722
- The Co-ordination and Regulation of Movements.Pergamon Press Ltd., Oxford, England1967
- The bliss (not the problem) of motor abundance (not redundancy).Exp Brain Res. 2012; 217: 1-5
- Human Robotics.The MIT Press, Cambridge, MA2013
- Stiffness, not inertial coupling, determines path curvature of wrist motions.J Neurophysiol. 2012; 107: 1230-1240
- Dynamics of wrist rotations.J Biomech. 2011; 44: 614-621
- Contributions of intrinsic visco-elastic torques during planar index finger and wrist movements.IEEE T Bio-Med Eng. 2012; 59: 586-594
- The passive stiffness of the wrist and forearm.J Neurophysiol. 2012; 108: 1158-1166
- Position-dependent characterization of passive wrist stiffness.IEEE T Bio-Med Eng. 2014; 61: 2235-2244
- Dynamics of wrist and forearm rotations.J Biomech. 2014; 47: 2779-2785
- Passive stiffness of coupled wrist and forearm rotations.Ann Biomed Eng. 2014; 42: 1853-1866
- In vivo estimation of human forearm and wrist dynamic properties.IEEE T Neur Sys Reh. 2017; 25: 436-446
Article info
Publication history
Published online: September 17, 2022
Accepted:
July 1,
2022
Received in revised form:
June 22,
2022
Received:
May 21,
2021
Publication stage
In Press Corrected ProofFootnotes
Conflict of interest: All named authors hereby declare that they have no conflicts of interest to disclose.
Identification
Copyright
© 2022 Elsevier Inc. All rights reserved.