Advertisement
Full Length Article| Volume 35, ISSUE 3, P377-387, July 2022

Shoulder structure and function: The impact of osteoarthritis and rehabilitation strategies

      Highlights

      • Shoulder osteoarthritis can lead to significant loss of upper limb function
      • Although rehabilitation therapy has been shown to improve shoulder function, there are no guidelines for therapy modality, intensity, duration, or initiation in shoulder osteoarthritis
      • More research is necessary to quantify the specific benefits of therapy sub-types in the treatment of shoulder osteoarthritis

      Abstract

      Study Design

      Invited review.

      Background

      Shoulder osteoarthritis can result in significant functional deficits. To improve diagnosis and treatment, we must better understand the impact of osteoarthritis on shoulder biomechanics and the known mechanical benefits of currently available treatments.

      Purpose

      The purpose of this paper is to present up-to-date data on the effects of osteoarthritis and rehabilitation on the biomechanical parameters contributing to shoulder function. With this goal, we also reviewed the anatomy and the ranges of motion of the shoulder.

      Methods

      A search of electronic databases was conducted. All study designs were included to inform this qualitative, narrative literature review.

      Results

      This review describes the biomechanics of the shoulder, the impact of osteoarthritis on shoulder function, and the treatment of shoulder osteoarthritis with an emphasis on rehabilitation.

      Conclusions

      The shoulder is important for the completion of activities of daily living, and osteoarthritis of the shoulder can significantly reduce shoulder motion and arm function. Although shoulder rehabilitation is an integral treatment modality to improve pain and function in shoulder osteoarthritis, few high-quality studies have investigated the effects and benefits of shoulder physical and occupational therapies. To advance the fields of therapy and rehabilitation, future studies investigating the effects of therapy intensity, therapy duration, and the relative benefits of therapy subtypes on shoulder biomechanics and function are necessary.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hand Therapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Helmick CG
        • Felson DT
        • Lawrence RC
        • et al.
        Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I.
        Arthritis Rheum. 2008; 58: 15-25https://doi.org/10.1002/art.23177
        • Hawker GA
        Osteoarthritis is a serious disease.
        Clin Exp Rheumatol. 2019; 37: 3-6
        • Gore M
        • Tai KS
        • Sadosky A
        • Leslie D
        • Stacey BR
        Clinical comorbidities, treatment patterns, and direct medical costs of patients with osteoarthritis in usual care: a retrospective claims database analysis.
        J Med Econ. 2011; 14: 497-507https://doi.org/10.3111/13696998.2011.594347
        • Oh JH
        • Chung SW
        • Oh CH
        • et al.
        The prevalence of shoulder osteoarthritis in the elderly Korean population: association with risk factors and function.
        J Shoulder Elb Surg. 2011; 20: 756-763https://doi.org/10.1016/j.jse.2011.01.021
        • Kobayashi T
        • Takagishi K
        • Shitara H
        • et al.
        Prevalence of and risk factors for shoulder osteoarthritis in Japanese middle-aged and elderly populations.
        J Shoulder Elb Surg. 2014; 23: 613-619https://doi.org/10.1016/j.jse.2013.11.031
        • Ansok CB
        • Muh SJ
        Optimal management of glenohumeral osteoarthritis.
        Orthop Res Rev. 2018; 10: 9-18https://doi.org/10.2147/ORR.S134732
        • Millett PJ
        • Gobezie R
        • Boykin RE
        Shoulder osteoarthritis: diagnosis and management.
        Am Acad Fam Physicians. 2008; 78: 605-611
        • Ibounig T
        • Simons T
        • Launonen A
        • Paavola M
        Glenohumeral osteoarthritis: an overview of etiology and diagnostics.
        Scand J Surg. 2020; (Published online): 1-11https://doi.org/10.1177/1457496920935018
        • Terry GC
        • Chopp TM
        Functional anatomy of the shoulder.
        J Athl Train. 2000; 35: 248-255https://doi.org/10.1093/ptj/46.10.1043
        • Felstead AJ
        • Ricketts D
        Biomechanics of the shoulder and elbow.
        Orthop Trauma. 2017; 31: 300-305https://doi.org/10.1016/j.mporth.2017.07.004
        • Lugo R
        • Kung P
        • Ma CB
        Shoulder biomechanics.
        Eur J Radiol. 2008; 68: 16-24https://doi.org/10.1016/j.ejrad.2008.02.051
        • O'Neill TW
        • McCabe PS
        • McBeth J
        Update on the epidemiology, risk factors and disease outcomes of osteoarthritis.
        Best Pract Res Clin Rheumatol. 2018; 32: 312-326https://doi.org/10.1016/j.berh.2018.10.007
        • Egloff C
        • Hügle T
        • Valderrabano V
        Biomechanics and pathomechanisms of osteoarthritis.
        Swiss Med Wkly. 2012; 142: 1-14https://doi.org/10.4414/smw.2012.13583
        • Buckwalter JA
        • Saltzman C
        • Brown T
        The impact of osteoarthritis: Implications for research.
        Clin Orthop Relat Res. 2004; 427S: S6-S15https://doi.org/10.1097/01.blo.0000143938.30681.9d
        • Saltzman BM
        • Leroux TS
        • Verma NN
        • Romeo AA
        Glenohumeral osteoarthritis in the young patient.
        J Am Acad Orthop Surg. 2018; 26: e361-e370https://doi.org/10.5435/JAAOS-D-16-00657
        • Felson DT
        Osteoarthritis as a disease of mechanics.
        Osteoarthr Cartil. 2013; 21: 10-15https://doi.org/10.1016/j.joca.2012.09.012
        • Felson DT
        • Niu J
        • Gross KD
        • et al.
        Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from MOST and the Osteoarthritis Initiative.
        Arthritis Rheum. 2013; 65: 355-362https://doi.org/10.1002/art.37726.Valgus
        • Alashkham A
        • Soames R
        The glenoid and humeral head in shoulder osteoarthritis: a comprehensive review.
        Clin Anat. 2021; 34: 710-720https://doi.org/10.1002/ca.23703
        • Peat M
        • Culham E
        • Wilk KE
        Functional anatomy of the shoulder complex.
        JOSPT. 1993; 18: 342-350https://doi.org/10.1016/B978-044306701-3.50004-9
        • Lawrence RL
        • Braman JP
        • Laprade RF
        • Ludewig PM
        Comparison of 3-dimensional shoulder complex kinematics in individuals with and without shoulder pain, part 1: sternoclavicular, acromioclavicular, and scapulothoracic joints.
        J Orthop Sports Phys Ther. 2014; 44: 636-645https://doi.org/10.2519/jospt.2014.5339
        • Willimon SC
        • Gaskill TR
        • Millett PJ
        Acromioclavicular joint injuries: anatomy, diagnosis, and treatment.
        Phys Sportsmed. 2011; 39: 116-122https://doi.org/10.3810/psm.2011.02.1869
        • McIntosh L
        • McKenna K
        • Gustafsson L
        Active and passive shoulder range of motion in healthy older people.
        Br J Occup Ther. 2003; 66: 318-324https://doi.org/10.1177/030802260306600706
        • Gill TK
        • Shanahan EM
        • Tucker GR
        • Buchbinder R
        • Hill CL
        Shoulder range of movement in the general population: age and gender stratified normative data using a community-based cohort.
        BMC Musculoskelet Disord. 2020; 21: 1-9https://doi.org/10.1186/s12891-020-03665-9
        • Aizawa J
        • Masuda T
        • Koyama T
        • et al.
        Three-dimensional motion of the upper extremity joints during various activities of daily living.
        J Biomech. 2010; 43: 2915-2922https://doi.org/10.1016/j.jbiomech.2010.07.006
        • Anderton M
        • Newton Ede M
        • Holt E
        Normal range of motion of the shoulder: an imprecise benchmark.
        Orthop Proc. 2018; 94B (Available at:)
        • Soucie JM
        • Wang C
        • Forsyth A
        • et al.
        Range of motion measurements: Reference values and a database for comparison studies.
        Haemophilia. 2011; 17: 500-507https://doi.org/10.1111/j.1365-2516.2010.02399.x
        • Docimo S
        • Kornitsky D
        • Futterman B
        • Elkowitz DE
        Surgical treatment for acromioclavicular joint osteoarthritis: patient selection, surgical options, complications, and outcome.
        Curr Rev Musculoskelet Med. 2008; 1: 154-160https://doi.org/10.1007/s12178-008-9024-5
        • Teece RM
        • Lunden JB
        • Lloyd AS
        • Kaiser AP
        • Cieminski CJ
        • Ludewig PM
        Three-dimensional acromioclavicular joint motions during elevation of the arm.
        J Orthop Sports Phys Ther. 2008; 38: 181-190https://doi.org/10.2519/jospt.2008.2386
        • Ludewig PM
        • Phadke V
        • Braman JP
        • Hassett DR
        • Cieminski CJ
        • Laprade RF
        Motion of the shoulder complex during multiplanar humeral elevation.
        J Bone Jt Surg - Ser A. 2009; 91: 378-389https://doi.org/10.2106/JBJS.G.01483
        • McLean M
        • Hoban K
        • Gupta R
        • et al.
        The epidemiology of acromioclavicular joint excision.
        J Orthop Surg. 2019; 27: 1-6https://doi.org/10.1177/2309499018816521
        • Thongngarm T
        • McMurray RW
        Osteoarthritis of the sternoclavicular joint.
        J Clin Rheumatol. 2000; 6: 269-271https://doi.org/10.1097/00124743-200010000-00007
        • Lefèvre-Colau MM
        • Nguyen C
        • Palazzo C
        • et al.
        Kinematic patterns in normal and degenerative shoulders. Part II: review of 3-D scapular kinematic patterns in patients with shoulder pain, and clinical implications.
        Ann Phys Rehabil Med. 2018; 61: 46-53https://doi.org/10.1016/j.rehab.2017.09.002
        • Sharma L
        • Dunlop D
        • Cahue S
        • Song J
        • Hayes K
        Quadriceps strength and osteoarthritis progression in malaligned and lax knees.
        Ann Intern Med. 2003; 138: 613-620https://doi.org/10.7326/0003-4819-138-8-200304150-00006
        • Sanchez-Adams J
        • Leddy HA
        • McNulty AL
        • O'Conor CJ
        • Guilak F
        The mechanobiology of articular cartilage: bearing the burden of osteoarthritis.
        Curr Rheumatol Rep. 2014; 16: 1-9https://doi.org/10.1007/s11926-014-0451-6
        • Sadeghi H
        • Shepherd DET
        • Espino DM
        Effect of the variation of loading frequency on surface failure of bovine articular cartilage.
        Osteoarthr Cartil. 2015; 23: 2252-2258https://doi.org/10.1016/j.joca.2015.06.002
        • Guilak F
        Biomechanical factors in osteoarthritis.
        Best Pract Res Clin Rheumatol. 2011; 25: 815-823https://doi.org/10.1016/j.berh.2011.11.013
        • Buckwalter JA
        • Martin JA
        Sports and osteoarthritis.
        Curr Opin Rheumatol. 2004; 16: 634-639https://doi.org/10.1007/978-3-319-15735-1_9
        • Walker KE
        • Simcock XC
        • Jun BJ
        • Iannotti JP
        • Ricchetti ET
        Progression of glenoid morphology in glenohumeral osteoarthritis.
        J Bone Jt Surg - Am Vol. 2018; 100: 49-56https://doi.org/10.2106/JBJS.17.00064
        • Denard PJ
        • Walch G
        Current concepts in the surgical management of primary glenohumeral arthritis with a biconcave glenoid.
        J Shoulder Elb Surg. 2013; 22: 1589-1598https://doi.org/10.1016/j.jse.2013.06.017
        • Walch G
        • Moraga C
        • Young A
        • Castellanos-Rosas J
        Results of anatomic nonconstrained prosthesis in primary osteoarthritis with biconcave glenoid.
        J Shoulder Elb Surg. 2012; 21: 1526-1533https://doi.org/10.1016/j.jse.2011.11.030
        • Gerber C
        • Costouros JG
        • Sukthankar A
        • Fucentese SF
        Static posterior humeral head subluxation and total shoulder arthroplasty.
        J Shoulder Elb Surg. 2009; 18: 505-510https://doi.org/10.1016/j.jse.2009.03.003
        • Hussey MM
        • Steen BM
        • Cusick MC
        • et al.
        The effects of glenoid wear patterns on patients with osteoarthritis in total shoulder arthroplasty: an assessment of outcomes and value.
        J Shoulder Elb Surg. 2015; 24: 682-690https://doi.org/10.1016/j.jse.2014.09.043
        • Sheth MM
        • Morris BJ
        • Laughlin MS
        • et al.
        Outcomes of anatomic shoulder arthroplasty performed on B2 vs. A1 type glenoids.
        J Shoulder Elb Surg. 2020; 29: 2571-2577https://doi.org/10.1016/j.jse.2020.03.050
        • Ricchetti ET
        • Hendel MD
        • Collins DN
        • Iannotti JP
        Is premorbid glenoid anatomy altered in patients with glenohumeral osteoarthritis?.
        Clin Orthop Relat Res. 2013; 471: 2932-2939https://doi.org/10.1007/s11999-013-3069-5
        • Bercik MJ
        • Kruse K
        • Yalizis M
        • Gauci MO
        • Chaoui J
        • Walch G
        A modification to the Walch classification of the glenoid in primary glenohumeral osteoarthritis using three-dimensional imaging.
        J Shoulder Elb Surg. 2016; 25: 1601-1606https://doi.org/10.1016/j.jse.2016.03.010
        • Bjarnison AO
        • Sørensen TJ
        • Kallemose T
        • Barfod KW.
        The critical shoulder angle is associated with osteoarthritis in the shoulder but not rotator cuff tears: A retrospective case-control study.
        J Shoulder Elb Surg. 2017; 26: 2097-2102https://doi.org/10.1016/j.jse.2017.06.001
        • Beeler S
        • Hasler A
        • Götschi T
        • Meyer DC
        • Gerber C
        Critical shoulder angle: acromial coverage is more relevant than glenoid inclination.
        J Orthop Res. 2019; 37: 205-210https://doi.org/10.1002/jor.24053
        • Beeler S
        • Hasler A
        • Götschi T
        • Meyer DC
        • Gerber C
        Different acromial roof morphology in concentric and eccentric osteoarthritis of the shoulder: multiplane reconstruction analysis of 105 shoulder computed tomography scans.
        J Shoulder Elb Surg. 2018; 27: e357-e366https://doi.org/10.1016/j.jse.2018.05.019
        • Beeler S
        • Hasler A
        • Getzmann J
        • Weigelt L
        • Meyer DC
        • Gerber C
        Acromial roof in patients with concentric osteoarthritis and massive rotator cuff tears: multiplanar analysis of 115 computed tomography scans.
        J Shoulder Elb Surg. 2018; 27: 1866-1876https://doi.org/10.1016/j.jse.2018.03.014
        • Mantell MT
        • Nelson R
        • Lowe JT
        • Endrizzi DP
        • Jawa A
        Critical shoulder angle is associated with full-thickness rotator cuff tears in patients with glenohumeral osteoarthritis.
        J Shoulder Elb Surg. 2017; 26: e376-e381https://doi.org/10.1016/j.jse.2017.05.020
        • Zaid MB
        • Young NM
        • Pedoia V
        • Feeley BT
        • Ma CB
        • Lansdown DA
        Anatomic shoulder parameters and their relationship to the presence of degenerative rotator cuff tears and glenohumeral osteoarthritis: a systematic review and meta-analysis.
        J Shoulder Elb Surg. 2019; 28[1]M. B: 2457-2466https://doi.org/10.1016/j.jse.2019.05.008
        • Villatte G
        • van der Kruk E
        • Bhuta AI
        • et al.
        A biomechanical confirmation of the relationship between critical shoulder angle (CSA) and articular joint loading.
        J Shoulder Elb Surg. 2020; 29: 1967-1973https://doi.org/10.1016/j.jse.2020.03.002
        • Li X
        • Olszewski N
        • Abdul-Rassoul H
        • Curry EJ
        • Galvin JW
        • Eichinger JK
        Relationship between the critical shoulder angle and shoulder disease.
        JBJS Rev. 2018; 6: e1https://doi.org/10.2106/JBJS.RVW.17.00161
        • Vo KV
        • Hackett DJ
        • Gee AO
        • Hsu JE
        Classifications in brief: Walch classification of primary glenohumeral osteoarthritis.
        Clin Orthop Relat Res. 2017; 475: 2335-2340https://doi.org/10.1007/s11999-017-5317-6
        • Domos P
        • Checchia CS
        • Walch G
        Walch B0 glenoid: pre-osteoarthritic posterior subluxation of the humeral head.
        J Shoulder Elb Surg. 2018; 27: 181-188https://doi.org/10.1016/j.jse.2017.08.014
        • Neer CS
        Replacement arthroplasty for glenohumeral osteoarthritis.
        J Bone Jt Surg - Ser A. 1974; 56: 1-13https://doi.org/10.2106/00004623-197456010-00001
        • Donohue KW
        • Ricchetti ET
        • Ho JC
        • Iannotti JP
        The association between rotator cuff muscle fatty infiltration and glenoid morphology in glenohumeral osteoarthritis.
        J Bone Jt Surg Am Vol. 2018; 100: 381-387https://doi.org/10.2106/JBJS.17.00232
        • Aleem AW
        • Chalmers PN
        • Bechtold D
        • Khan AZ
        • Tashjian RZ
        • Keener JD
        Association between rotator cuff muscle size and glenoid deformity in primary glenohumeral osteoarthritis.
        J BONE Jt Surg. 2019; 101-A: 1912-1920https://doi.org/10.2106/JBJS.19.00086
        • Moverman MA
        • Puzzitiello RN
        • Menendez ME
        • et al.
        Rotator cuff fatty infiltration and muscle atrophy: Relation to glenoid deformity in primary glenohumeral osteoarthritis.
        J Shoulder Elb Surg. 2021; (Published online): 1-8https://doi.org/10.1016/j.jse.2021.07.007
        • Mall NA
        • Foley E
        • Chalmers PN
        • Cole BJ
        • Romeo AA
        • Bach BR
        Degenerative joint disease of the acromioclavicular joint: a review.
        Am J Sports Med. 2013; 41: 2684-2692https://doi.org/10.1177/0363546513485359
        • Namdari S
        • Yagnik G
        • Ebaugh DD
        • et al.
        Defining functional shoulder range of motion for activities of daily living.
        J Shoulder Elb Surg. 2012; 21: 1177-1183https://doi.org/10.1016/j.jse.2011.07.032
        • Burkart AC
        • Debski RE
        Anatomy and function of the glenohumeral ligaments in anterior shoulder instability.
        Clin Orthop Relat Res. 2002; : 32-39https://doi.org/10.1097/00003086-200207000-00005
        • Doriot N
        • Wang X
        Effects of age and gender on maximum voluntary range of motion of the upper body joints.
        Ergonomics. 2006; 49: 269-281https://doi.org/10.1080/00140130500489873
        • Linaker C
        • Walker-Bone K
        Shoulder disorders and occupation.
        Best Pract Res Clin Rheumatol. 2015; 29: 405-423https://doi.org/10.1016/j.berh.2015.04.001.SHOULDER
        • Andrews JR
        Diagnosis and treatment of chronic painful shoulder: review of nonsurgical interventions.
        Arthrosc J Arthrosc Relat Surg. 2005; 21: 333-347https://doi.org/10.1016/j.arthro.2004.11.003
        • Tauro JC
        • Paulson M
        Shoulder Stiffness.
        Arthrosc - J Arthrosc Relat Surg. 2008; 24: 949-955https://doi.org/10.1016/j.arthro.2008.03.014
        • Zyto K
        • Kronberg M
        • Brostrom L-A
        Shoulder function after displaced fractures of the proximal humerus.
        J Shoulder Elb Surg. 1995; 4: 331-336
        • Spranz DM
        • Bruttel H
        • Eckerle JM
        • Wolf SI
        • Berrsche G
        • Maier MW
        Variation of the glenohumeral and scapulothoracic motion in progressive severity of glenohumeral osteoarthritis.
        Orthop Traumatol Surg Res. 2019; 105: 1503-1507https://doi.org/10.1016/j.otsr.2019.07.010
        • Fayad F
        • Roby-Brami A
        • Yazbeck C
        • et al.
        Three-dimensional scapular kinematics and scapulohumeral rhythm in patients with glenohumeral osteoarthritis or frozen shoulder.
        J Biomech. 2008; 41: 326-332https://doi.org/10.1016/j.jbiomech.2007.09.004
        • Chen RE
        • Papuga MO
        • Nicandri GT
        • Miller RJ
        • Voloshin I
        Preoperative Patient-Reported Outcomes Measurement Information System (PROMIS) scores predict postoperative outcome in total shoulder arthroplasty patients.
        J Shoulder Elb Surg. 2019; 28: 547-554https://doi.org/10.1016/j.jse.2018.08.040
        • Jensen AR
        • Tangtiphaiboontana J
        • Marigi E
        • Mallett KE
        • Sperling JW
        • Sanchez-Sotelo J
        Anatomic total shoulder arthroplasty for primary glenohumeral osteoarthritis is associated with excellent outcomes and low revision rates in the elderly.
        J Shoulder Elb Surg. 2021; 30: S131-S139https://doi.org/10.1016/j.jse.2020.11.030
        • Heifner JJ
        • Kumar AD
        • Wagner ER
        Glenohumeral osteoarthritis with intact rotator cuff treated with reverse shoulder arthroplasty: a systematic review.
        J Shoulder Elb Surg. 2021; 30: 2895-2903https://doi.org/10.1016/j.jse.2021.06.010
        • Maier MW
        • Niklasch M
        • Dreher T
        • et al.
        Motion patterns in activities of daily living: 3- year longitudinal follow-up after total shoulder arthroplasty using an optical 3D motion analysis system.
        BMC Musculoskelet Disord. 2014; 15: 1-8https://doi.org/10.1186/1471-2474-15-244
        • Valevicius AM
        • Jun PY
        • Hebert JS
        • Vette AH.
        Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks: A systematic review.
        J Electromyogr Kinesiol. 2018; 40: 1-15https://doi.org/10.1016/j.jelekin.2018.02.011
        • Murphy MA
        • Sunnerhagen KS
        • Johnels B
        • Willén C
        Three-dimensional kinematic motion analysis of a daily activity drinking from a glass: a pilot study.
        J Neuroeng Rehabil. 2006; 3: 1-11https://doi.org/10.1186/1743-0003-3-18
        • Gates DH
        • Walters LS
        • Cowley J
        • Wilken JM
        • Resnik L
        Range of motion requirements for upper-limb activities of daily living.
        Am J Occup Ther. 2016; 70https://doi.org/10.5014/ajot.2016.015487
        • Vanezis A
        • Robinson MA
        • Darras N
        The reliability of the ELEPAP clinical protocol for the 3D kinematic evaluation of upper limb function.
        Gait Posture. 2015; 41: 431-439https://doi.org/10.1016/j.gaitpost.2014.11.007
        • van Andel CJ
        • Wolterbeek N
        • Doorenbosch CAM
        • Veeger DJ (H EJ)
        • Harlaar J
        Complete 3D kinematics of upper extremity functional tasks.
        Gait Posture. 2008; 27: 120-127https://doi.org/10.1016/j.gaitpost.2007.03.002
        • Engdahl SM
        • Gates DH
        Reliability of upper limb and trunk joint angles in healthy adults during activities of daily living.
        Gait Posture. 2018; 60: 41-47https://doi.org/10.1016/j.gaitpost.2017.11.001.Reliability
        • Ricci FPFM
        • Santiago PRP
        • Zampar AC
        • Pinola LN
        • Fonseca MCR
        Upper extremity coordination strategies depending on task demand during a basic daily activity.
        Gait Posture. 2015; 42: 472-478https://doi.org/10.1016/j.gaitpost.2015.07.061
        • Maier MW
        • Kasten P
        • Niklasch M
        • et al.
        3D motion capture using the HUX model for monitoring functional changes with arthroplasty in patients with degenerative osteoarthritis.
        Gait Posture. 2014; 39: 7-11https://doi.org/10.1016/j.gaitpost.2013.07.111
        • Oosterwijk AM
        • Nieuwenhuis MK
        • van der Schans CP
        • Mouton LJ
        Shoulder and elbow range of motion for the performance of activities of daily living: A systematic review.
        Physiother Theory Pract. 2018; 34: 505-528https://doi.org/10.1080/09593985.2017.1422206
        • Sinusas K
        Osteoarthritis: diagnosis and treatment.
        Am Fam Physician. 2012; 85: 49-56https://doi.org/10.1136/bmj.1.5222.355-a
        • Greenberg DL
        Evaluation and treatment of shoulder pain.
        Med Clin North Am. 2014; 98: 487-504https://doi.org/10.1016/j.mcna.2014.01.016
        • Khazzam M
        • Gee AO
        • Pearl M
        Management of glenohumeral joint osteoarthritis.
        J Am Acad Orthop Surg. 2020; 28: 781-789https://doi.org/10.5435/JAAOS-D-20-00404
        • Wernecke C
        • Braun HJ
        • Dragoo JL
        The effect of intra-articular corticosteroids on articular cartilage: a systematic review.
        Orthop J Sport Med. 2015; 3: 1-7https://doi.org/10.1177/2325967115581163
        • Kreuz PC
        • Steinwachs M
        • Angele P
        Single-dose local anesthetics exhibit a type-, dose-, and time-dependent chondrotoxic effect on chondrocytes and cartilage: a systematic review of the current literature.
        Knee Surgery, Sport Traumatol Arthrosc. 2018; 26: 819-830https://doi.org/10.1007/s00167-017-4470-5
        • Bobos P
        • Macdermid JC
        • Nazari G
        • Lalone EA
        • Ferreira L
        • Grewal R
        Joint protection programmes for people with osteoarthritis and rheumatoid arthritis of the hand: An overview of systematic reviews.
        Physiother Canada. 2021; 73: 56-65https://doi.org/10.3138/ptc-2019-0037
        • Boselli KJ
        • Ahmad CS
        • Levine WN
        Treatment of glenohumeral arthrosis.
        Am J Sports Med. 2010; 38: 2558-2572https://doi.org/10.1177/0363546510369250
        • Marinko LN
        • Chacko JM
        • Dalton D
        • Chacko CC
        The effectiveness of therapeutic exercise for painful shoulder conditions: a meta-analysis.
        J Shoulder Elb Surg. 2011; 20: 1351-1359https://doi.org/10.1016/j.jse.2011.05.013
        • Kluemper M
        • Uhl T
        • Hazelrigg H
        Effect of stretching and strengthening shoulder muscles on forward shoulder posture in competitive swimmers.
        J Sport Rehabil. 2006; 15: 58-70https://doi.org/10.1123/jsr.15.1.58
        • Macías-Hernández SI
        • Morones-Alba JD
        • Miranda-Duarte A
        • et al.
        Glenohumeral osteoarthritis: overview, therapy, and rehabilitation.
        Disabil Rehabil. 2017; 39: 1674-1682https://doi.org/10.1080/09638288.2016.1207206
        • Gonzalez-Rave JM
        • Sanchez-Gomez A
        • Santos-Garcia D
        Efficacy of two different stretch training programs (passive vs. propriceptive neuromuscular facilitation) on shoulder and hip range of motion in older people.
        J Strength Cond Res. 2012; 26: 1045-1051
        • Crowell MS
        • Tragord BS
        Orthopaedic manual physical therapy for shoulder pain and impaired movement in a patient with glenohumeral joint osteoarthritis: a case report.
        J Orthop Sports Phys Ther. 2015; 45: 453-461https://doi.org/10.2519/jospt.2015.5887
        • Brody LT
        Effective therapeutic exercise prescription: The right exercise at the right dose.
        J Hand Ther. 2012; 25: 220-232https://doi.org/10.1016/j.jht.2011.09.009
        • Langer JS
        • Sueoka SS
        • Wang AA
        The importance of shoulder external rotation in activities of daily living: improving outcomes in traumatic brachial plexus palsy.
        J Hand Surg Am. 2012; 37: 1430-1436https://doi.org/10.1016/j.jhsa.2012.04.011
        • Bunning BRD
        • Materson RS
        A rational program of exercise for patients with osteoarthritis.
        Semin Arthritis Rheum. 1991; 21: 33-43https://doi.org/10.1016/0049-0172(91)90038-2
        • García-Escudero JB
        • Miguel P
        • Trillos H
        Treatment of osteoarthritis of the knee with a combination of autologous conditioned serum and physiotherapy: a two-year observational study.
        PLOS One. 2015; 10e0145551https://doi.org/10.1371/journal.pone.0145551
        • Menge TJ
        • Boykin RE
        • Bushnell BD
        • Byram IR
        Acromioclavicular osteoarthritis: a common cause of shoulder pain.
        South Med Assoc. 2014; 107: 324-329https://doi.org/10.1097/SMJ.0000000000000101
        • Gollnick RE
        • Armstrong RB
        • Saltin B
        • Saubert IV CW
        • Sembrowich WL
        • Shepherd RE
        Effect of training on enzyme activity and fiber composition of human skeletal muscle.
        J Appl Physiol. 1973; 34: 1973
        • Escamilla RF
        • Yamashiro K
        • Paulos L
        • Andrews JR
        Shoulder muscle activity and function in common shoulder rehabilitation exercises.
        Sport Med. 2009; 39: 663-685https://doi.org/10.2165/00007256-200939080-00004
        • Kibler WB
        • McMullen J
        • Uhl T
        Shoulder rehabilitation strategies, guidelines, and practice.
        Oper Tech Sports Med. 2012; 20: 103-112https://doi.org/10.1053/j.otsm.2012.03.012
        • Littlewood C
        • Morgan M
        • Pitt L
        • et al.
        Rehabilitation following shoulder arthroplasty in the United Kingdom National Health Service: a survey of publicly facing information.
        Musculoskeletal Care. 2020; 18: 359-364https://doi.org/10.1002/msc.1468
        • Lee S
        • Kim T
        • Kim S
        Sarcopenic obesity is more closely associated with knee osteoarthritis than is nonsarcopenic obesity: a cross-sectional study.
        Arthritis Rheum. 2012; 64: 3947-3954https://doi.org/10.1002/art.37696
        • Edwards PK
        • Ebert JR
        • Littlewood C
        • Ackland T
        • Wang A
        Effectiveness of formal physical therapy following total shoulder arthroplasty: a systematic review.
        Shoulder Elb. 2020; 12: 136-143https://doi.org/10.1177/1758573218812038
        • Bullock GS
        • Garrigues GE
        • Ledbetter L
        • Kennedy J
        A systematic review of proposed rehabilitation guidelines following anatomic and reverse shoulder arthroplasty.
        J Orthop Sports Phys Ther. 2019; 49: 337-346https://doi.org/10.2519/jospt.2019.8616
        • Lu Z
        • Nazari G
        • Almeida PH
        • Pontes T
        • MacDermid JC
        The clinical outcome of physiotherapy after reversed shoulder arthroplasty: a systematic review.
        Disabil Rehabil. 2021; : 1-12https://doi.org/10.1080/09638288.2021.1985633
        • McCarty L
        • Cole B
        Nonarthroplasty treatment of glenohumeral cartilage lesions.
        J Arthrosc Relat Surg. 2005; 21: 1131-1142https://doi.org/10.1016/j.arthro.2005.06.023
        • Mulieri PJ
        • Holcomb JO
        • Dunning P
        • et al.
        Is a formal physical therapy program necessary after total shoulder arthroplasty for osteoarthritis?.
        J Shoulder Elb Surg. 2010; 19: 570-579https://doi.org/10.1016/j.jse.2009.07.012
        • Rodeghero JR
        • Cleland JA
        • Mintken PE
        • Cook CE
        Risk stratification of patients with shoulder pain seen in physical therapy practice.
        J Eval Clin Pract. 2017; 23: 257-263https://doi.org/10.1111/jep.12591
        • Davis DE
        • Cox R
        • Patel MS
        • Lazarus M
        • Ramsey M
        • Namdari S
        Successful outcomes achieved via web-based, home program after total shoulder arthroplasty.
        Arch Bone Jt Surg. 2020; 8: 661-667https://doi.org/10.22038/ABJS.2020.42832.2164
        • Cricchio M
        • Frazer C
        Scapulothoracic and scapulohumeral exercises: a narrative review of electromyographic studies.
        J Hand Ther. 2011; 24: 322-334https://doi.org/10.1016/j.jht.2011.06.001
      1. NK Paschos, Orthopaedic study guide series: the shoulder. Springer International Publishing AG. 2017.

        • Bang MD
        • Deyle GD
        Conparison of supervised exercise with and without manual physical therapy for patients with shoulder impingement syndrome.
        J Orthop Sport Phys Ther. 2000; 30: 126-137
        • Maitland GD
        Passive movement techniques for intra-articular and periarticular disorders.
        Aust J Physiother. 1985; 31: 3-8https://doi.org/10.1016/S0004-9514(14)60614-0
        • Manske RC
        • Meschke M
        • Porter A
        • Smith B
        • Reiman M
        A randomized controlled single-blinded comparison of stretching versus stretching and joint mobilization for posterior shoulder tightness measured by internal rotation motion loss.
        Sports Health. 2010; 2: 94-100https://doi.org/10.1177/1941738109347775
        • De Mey K
        • Danneels L
        • Cagnie B
        • Cools A
        Are kinetic chain rowing exercises relevant in shoulder and trunk injury prevention training?.
        Br J Sports Med. 2011; 45 (-320): 320https://doi.org/10.1136/bjsm.2011.084038.30
        • Cleland J
        • Selleck B
        • Stowell T
        • et al.
        Short-term effects of thoracic manipulation on lower trapezius muscle strength.
        J Man Manip Ther. 2004; 12: 82-90https://doi.org/10.1179/106698104790825284
        • Kebaetse M
        • McClure P
        • Pratt NA
        Thoracic position effect on shoulder range of motion strength, and three-dimensional scapular kinematics.
        Arch Phys Med Rehabil. 1999; 80: 945-950https://doi.org/10.1016/S0003-9993(99)90088-6
        • Borstad JD
        • Ludewig PM
        Comparison of three stretches for the pectoralis minor muscle.
        J Shoulder Elb Surg. 2006; 15: 324-330https://doi.org/10.1016/j.jse.2005.08.011
        • McClure P
        • Greenberg E
        • Kareha S
        Evaluation and management of scapular dysfunction.
        Sports Med Arthrosc. 2012; 20: 39-48https://doi.org/10.1097/JSA.0b013e31824716a8
        • Ben KW
        The role of the scapula in athletic shoulder function.
        Am J Sports Med. 1998; 26: 325-337https://doi.org/10.1177/03635465980260022801
        • Bowling RW
        • Rockar PA
        • Erhard R
        Examination of the shoulder complex.
        Phys Ther. 1986; 66: 1866-1877https://doi.org/10.1093/ptj/66.12.1866
        • Kara D
        • Harput G
        • Duzgun I
        Trapezius muscle activation levels and ratios during scapular retraction exercises: a comparative study between patients with subacromial impingement syndrome and healthy controls.
        Clin Biomech. 2019; 67: 119-126https://doi.org/10.1016/j.clinbiomech.2019.05.020
        • De Mey K
        • Danneels L
        • Cagnie B
        • Huyghe L
        • Seyns E
        • Cools AM
        Conscious correction of scapular orientation in overhead athletes performing selected shoulder rehabilitation exercises: the effect on trapezius muscle activation measured by surface electromyography.
        J Orthop Sports Phys Ther. 2013; 43: 3-10https://doi.org/10.2519/jospt.2013.4283
        • Smith J
        • Dahm DL
        • Kaufman KR
        • et al.
        Electromyographic activity in the immobilized shoulder girdle musculature during scapulothoracic exercises.
        Arch Phys Med Rehabil. 2006; 87: 923-927https://doi.org/10.1016/j.apmr.2006.03.013
        • Kibler WB
        • Ludewig PM
        • McClure PW
        • Michener LA
        • Bak K
        • Sciascia AD
        Clinical implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement from the “scapular summit.”.
        Br J Sports Med. 2013; 47: 877-885https://doi.org/10.1136/bjsports-2013-092425
        • Fusaro I
        • Orsini S
        • Stignani S
        • Creta D
        • Cava FC
        • Benedetti MG
        Proposal for SICSeG guidelines for rehabilitation after anatomical shoulder prosthesis in concentric shoulder osteoarthritis.
        Musculoskelet Surg. 2013; 97: 31-37https://doi.org/10.1007/s12306-013-0257-0
        • Brems JJ
        Rehabilitation after total shoulder arthroplasty: current concepts.
        Semin Arthroplast JSES. 2007; 18: 55-65https://doi.org/10.1053/j.sart.2006.11.001
        • Wright JO
        • Ho A
        • Kalma J
        • et al.
        Uncemented reverse total shoulder arthroplasty as initial treatment for comminuted proximal humerus fractures.
        J Orthop Trauma. 2019; 33: e263-e269https://doi.org/10.1097/BOT.0000000000001465
        • Patel DN
        • Young B
        • Onyekwelu I
        • Zuckerman JD
        • Kwon YW
        Reverse total shoulder arthroplasty for failed shoulder arthroplasty.
        J Shoulder Elb Surg. 2012; 21: 1478-1483https://doi.org/10.1016/j.jse.2011.11.004
        • Puskas B
        • Harreld K
        • Clark R
        • Downes K
        • Virani NA
        • Frankle M
        Isometric strength, range of motion, and impairment before and after total and reverse shoulder arthroplasty.
        J Shoulder Elb Surg. 2013; 22: 869-876https://doi.org/10.1016/j.jse.2012.09.004
        • Kiet TK
        • Feeley BT
        • Naimark M
        • et al.
        Outcomes after shoulder replacement: comparison between reverse and anatomic total shoulder arthroplasty.
        J Shoulder Elb Surg. 2015; 24: 179-185https://doi.org/10.1016/j.jse.2014.06.039
        • Habermeyer P
        • Magosch P
        • Lichtenberg S
        Recentering the humeral head for glenoid deficiency in total shoulder arthroplasty.
        Clin Orthop Relat Res. 2007; 457: 124-132https://doi.org/10.1097/BLO.0b013e31802ff03c
        • Berliner JL
        • Regalado-Magdos A
        • Ma CB
        • Feeley BT
        Biomechanics of reverse total shoulder arthroplasty.
        J Shoulder Elb Surg. 2015; 24: 150-160https://doi.org/10.1016/j.jse.2014.08.003
        • Lädermann A
        • Williams MD
        • Melis B
        • Hoffmeyer P
        • Walch G
        Objective evaluation of lengthening in reverse shoulder arthroplasty.
        J Shoulder Elb Surg. 2009; 18: 588-595https://doi.org/10.1016/j.jse.2009.03.012
        • Ackland DC
        • Roshan-Zamir S
        • Richardson M
        • Pandy MG
        Muscle and joint-contact loading at the glenohumeral joint after reverse total shoulder arthroplasty.
        J Orthop Res. 2011; 29: 1850-1858https://doi.org/10.1002/jor.21437
        • Bruttel H
        • Spranz DM
        • Bülhoff M
        • Aljohani N
        • Wolf SI
        • Maier MW
        Comparison of glenohumeral and humerothoracical range of motion in healthy controls, osteoarthritic patients and patients after total shoulder arthroplasty performing different activities of daily living.
        Gait Posture. 2019; 71: 20-25https://doi.org/10.1016/j.gaitpost.2019.04.001
        • Levy O
        • Copeland SA
        Cementless surface replacement arthroplasty (Copeland CSRA) for osteoarthritis of the shoulder.
        J Shoulder Elb Surg. 2004; 13: 266-271https://doi.org/10.1016/j.jse.2004.01.005

      JHT Read for Credit

      Quiz: # 867

      Record your answers on the Return Answer Form found on the tear-out coupon at the back of this issue or to complete online and use a credit card, go to JHTReadforCredit.com. There is only one best answer for each question.
      • # 1.
        Data were gathered from
        • a.
          interviews with experts in the field of shoulder biomechanics
        • b.
          electronic databases
        • c.
          cadaveric samples
        • d.
          videography
      • # 2.
        During elevation there is a maximum of ________ contact between the head of the humerus and the glenoid surface
        • a.
          80%
        • b.
          10%
        • c.
          50%
        • d.
          30%
      • # 3.
        The following was found
        • a.
          the most effective manual therapy techniques
        • b.
          the most effective drug therapies
        • c.
          a plethora of biomechanical information, but a paucity of effective rehab information
        • d.
          the most effective surgical interventions
      • # 4.
        Which is NOT a synovial joint
        • a.
          glenohumeral
        • b.
          scapulothoracic
        • c.
          A/C
        • d.
          sternoclavicular
      • # 5.
        The authors advocate for more studies addressing the effects of rehabilitation on shoulder biomechanics and functional outcomes
        • a.
          true
        • b.
          false
      When submitting to the HTCC for re-certification, please batch your JHT RFC certificates in groups of 3 or more to get full credit.