Advertisement

Rehabilitation strategies for wrist sensorimotor control impairment: From theory to practice

Published:December 11, 2015DOI:https://doi.org/10.1016/j.jht.2015.12.003

      Abstract

      This clinical review discusses the organization, neuroanatomy, assessment, clinical relevance, and rehabilitation of sensorimotor (SM) control impairment after wrist trauma. The wrist SM control system encompasses complex SM pathways that control normal wrist active range of motion and mediate wrist joint neuromuscular stability for maintaining joint function. Among various known assessment methods of wrist SM control impairment, the active wrist joint position sense test is determined to be a clinically meaningful and responsive measure for wrist SM control impairment after wrist fracture. Wrist trauma may involve significant soft tissue injury (ie, skin, ligament, muscle), which could disrupt the generation and transmission of adequate proprioceptive input from wrist mechanoreceptors, thus leading to significant joint SM impairment. Various clinical examples of wrist trauma (eg, distal radius fracture, scapholunate joint injury) along with known prognostic factors (eg, pain) that may influence wrist SM control impairment recovery are discussed to illustrate this point. This article proposes promising rehabilitation strategies toward restoring wrist joint conscious and unconscious SM control impairments, integrating current research evidence with clinical practice. These strategies require more rigorous evaluation in clinical trials.

      Level of evidence

      5.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hand Therapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Proske U.
        • Gandevia S.C.
        The kinaesthetic senses.
        J Physiol. 2009; 587: 4139-4146
        • Riemann B.L.
        • Lephart S.M.
        The sensorimotor system, part I: the physiologic basis of functional joint stability.
        J Athl Train. 2002; 37: 71-79
        • Brooke J.D.
        Somatosensory paths proceeding to spinal cord and brain centripetal and centrifugal control for human movement.
        Can J Physiol Pharmacol. 2004; 82: 723-731
        • Solomonow M.
        • Krogsgaard M.
        Sensorimotor control of knee stability. A review.
        Scand J Med Sci Sports. 2001; 11: 64-80
        • Simoneau M.
        • Paillard J.
        • Bard C.
        • et al.
        Role of the feedforward command and reafferent information in the coordination of a passing prehension task.
        Exp Brain Res. 1999; 128: 236-242
        • Elbert T.
        • Sterr A.
        • Flor H.
        • et al.
        Input-increase and input-decrease types of cortical reorganization after upper extremity amputation in humans.
        Exp Brain Res. 1997; 117: 161-164
        • May A.
        Chronic pain may change the structure of the brain.
        Pain. 2008; 137: 7-15
        • Price D.D.
        • Verne G.N.
        • Schwartz J.M.
        Plasticity in brain processing and modulation of pain.
        Prog Brain Res. 2006; 157: 333-352
        • Anderson W.S.
        • O'Hara S.
        • Lawson H.C.
        • Treede R.D.
        • Lenz F.A.
        Plasticity of pain-related neuronal activity in the human thalamus.
        Prog Brain Res. 2006; 157: 353-364
        • Sharma L.
        • Pai Y.C.
        Impaired proprioception and osteoarthritis.
        Curr Opin Rheumatol. 1997; 9: 253-258
        • Flor H.
        • Nikolajsen L.
        • Staehelin Jensen T.
        Phantom limp pain: a case of maladaptive CNS plasticity?.
        Nat Rev Neurosci. 2006; 7: 873-881
        • Borsook D.
        Pain and motor system plasticity.
        Pain. 2007; 132: 8-9
        • Karagiannopoulos C.
        • Sitler M.
        • Michlovitz S.
        • Tierney R.
        A descriptive study on wrist and hand sensori-motor impairment and function following distal radius fracture intervention.
        J Hand Ther. 2013; 26: 204-214
      1. Von Helmholtz H. Treatise on Physiological Optics. In Optical Society of America, Vol. 3, 1925. Menasha, Wisconsin; 1867 (Translation by J.P.C. Southall of 3rd German edition).

        • Bastian H.C.
        The ‘muscular sense’; its nature and cortical localization.
        Brain. 1888; 10: 1-137
        • Sherrington C.S.
        The muscular sense.
        in: Schafer E.A. Textbook of Physiology. Pentland, Edinburgh, UK1900: 1002-1102
        • Winter J.A.
        • Allen T.J.
        • Proske U.
        Muscle spindle signals combine with the sense of effort to indicate limb position.
        J Physiol. 2005; 568: 1035-1046
        • Goodwin G.M.
        • McCloskey D.I.
        • Matthews P.B.C.
        The contribution of muscle afferents to kineasthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents.
        Brain. 1972; 95: 705-748
        • Hagert E.
        Proprioception of the wrist joint: a review of current concepts and possible implications on the rehabilitation of the wrist.
        J Hand Ther. 2010; 23: 2-17
        • Myers J.B.
        • Lephart S.M.
        The role of the sensorimotor system in the athletic shoulder.
        J Athl Train. 2000; 35: 351-363
        • Myers J.B.
        • Lephart S.M.
        Sensorimotor deficits contributing to glenohumeral instability.
        Clin Orthop Relat Res. 2002; : 98-104
        • Johansson H.
        • Sjolander P.
        • Sojka P.
        A sensory role for the cruciate ligaments.
        Clin Orthop Relat Res. 1991; : 161-178
        • Sjolander P.
        • Johansson H.
        • Djupsjobacka M.
        Spinal and supraspinal effects of activity in ligaments afferents.
        J Electromyogr Kinesiol. 2002; 12: 167-176
        • Riemann B.L.
        • Lephart S.M.
        The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability.
        J Athl Train. 2002; 37: 81-84
        • Proske U.
        • Wise A.K.
        • Gregory J.E.
        The role of muscle receptors in the detection of movements.
        Prog Neurobiol. 2000; 60: 85-96
        • Proske U.
        Kinesthesia: the role of muscle receptors.
        Muscle Nerve. 2006; 34: 545-558
        • Collins D.F.
        • Refshauge K.M.
        • Todd G.
        • Gandevia S.C.
        Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee.
        J Neurophysiol. 2005; 94: 1699-1706
        • Gandevia S.C.
        • Smith J.L.
        • Crawford M.
        • Proske U.
        • Taylor J.
        Motor commands contribute to human position sense.
        J Physiol. 2006; 571: 703-710
        • Smith J.L.
        • Crawford M.
        • Proske U.
        • Taylor J.L.
        • Gandevia S.C.
        Signals of motor commands bias joint position sense in the presence of feedback from proprioceptors.
        J Appl Physiol. 2009; 106: 950-998
        • Allen T.J.
        • Ansems G.E.
        • Proske U.
        Effects of muscle conditioning on position sense at the human forearm during loading or fatigue of elbow flexors and the role of the sense of effort.
        J Physiol. 2007; 580: 423-434
        • Allen T.J.
        • Proske U.
        Effect of muscle fatigue on the sense of limb position and movement.
        Exp Brain Res. 2006; 170: 30-38
        • Hagert E.
        • Garcia-Elias M.
        • Forsgren S.
        • Ljung B.O.
        Immunohistochemical analysis of wrist ligament innervation in relation to their structural composition.
        J Hand Surg Am. 2007; 32: 30-36
        • Gilman S.
        Joint position sense and vibration sense: anatomical organization and assessment.
        J Neurol Neurosurg Psychiatry. 2002; 73: 473-477
        • Lephart S.M.
        • Fu F.H.
        Proprioception and Neuromuscular Control in Joint Stability.
        Human Kinetics, Champaign, IL2000
        • Hagert E.
        • Forsgren S.
        • Ljung B.O.
        Differences in the presence of mechanoreceptors and nerve structures between wrist ligaments may imply differential roles in wrist stabilization.
        J Orthop Res. 2005; 23: 757-763
        • Konishi Y.
        • Kasukawa T.
        • Tobita H.
        • Nishino A.
        • Konishi M.
        Gamma loop dysfunction of the quadriceps femoris of elderly patients hospitalized after fall injury.
        J Geriatr Phys Ther. 2007; 30: 54-59
        • Jami L.
        Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions.
        Physiol Rev. 1992; 72: 623-666
        • Wall P.D.
        The sensory and motor role of impulses travelling in the dorsal columns towards cerebral cortex.
        Brain. 1970; 93: 505-524
        • Metso A.J.
        • Palmu K.
        • Partanen J.V.
        Compound nerve conduction velocity: a reflection of proprioceptive afferents.
        Clin Neurophysiol. 2008; 119: 29-32
        • Young P.A.
        • Young P.H.
        Basic Clinical Neuroanatomy.
        Williams & Wilkins, Baltimore, MD1997
        • Hagert E.
        • Persson J.K.E.
        • Werner M.
        • Ljung B.O.
        Evidence of wrist proprioceptive reflexes elicited after stimulation of the scapholunate interosseous ligament.
        J Hand Surg Am. 2009; 34: 642-651
        • Goldman-Rakic P.S.
        Topography of cognition: parallel distributed networks in primate association cortex.
        Annu Rev Neurosci. 1988; 11: 137-145
        • Guyton A.C.
        Basic Neuroscience: Anatomy and Physiology.
        W.B. Saunders Co, Philadelphia, PA1991
        • Braun C.
        • Heinz U.
        • Schweizer R.
        • Wiech K.
        • Birbaumer N.
        • Topka H.
        Dynamic organization of the somatosensory cortex induced by motor activity.
        Brain. 2001; 124: 2259-2267
        • McCloskey D.I.
        Kinesthetic sensibility.
        Physiol Rev. 1978; 58: 763-770
        • Blakemore S.J.
        • Frith C.D.
        • Wolpert D.M.
        The cerebellum is involved in predicting the sensory consequences of action.
        Brain Imaging. 2001; 12: 1879-1884
        • Hagert E.
        • Ljung B.O.
        • Forsgren S.
        General innervation pattern and sensory corpuscles in the scapholunate interosseous ligament.
        Cells Tissues Organs. 2004; 177: 47-54
        • Sojka P.
        • Sjolander P.
        • Johansson H.
        • Djupsjobacka M.
        Influence from stretch-sensitive receptors in the collateral ligaments of the knee joint on the gamma-muscle-spindle systems of flexor and extensor muscles.
        Neurosci Res. 1991; 11: 55-62
        • Bergenheim M.
        • Johansson H.
        • Pedersen J.
        The role of the gamma-system for improving information transmission in populations of Ia afferents.
        Neurosci Res. 1995; 23: 207-215
        • Granata K.P.
        • Ikeda A.J.
        • Adel M.F.
        Electromechanical delay and reflex response in spastic cerebral palsy.
        Arch Phys Med Rehabil. 2000; 81: 888-894
        • Johansson H.
        • Sjolander P.
        • Sojka P.
        • Wadell I.
        Reflex actions on the gamma muscle spindle systems of muscles acting at the knee joint elicited by stretch of the posterior cruciate ligament.
        Neuro Orthoped. 1989; 8: 9-21
        • Sjolander P.
        • Djupsjobacka M.
        • Johansson H.
        • Sojka P.
        • Lorentzon R.
        Can receptors in the collateral ligaments contribute to knee joint stability and proprioception via effects on the fusomotor muscle spindle system? An experimental study in a cat.
        Neuro Orthoped. 1994; 15: 65-80
        • Sojka P.
        • Johansson H.
        • Sjolander P.
        • Lorentzon R.
        • Djupsjobacka M.
        Fusimotor neurons can be reflexly influenced by activity in receptor afferents from the posterior cruciate ligament.
        Brain Res. 1989; 483: 177-183
        • Zhou S.
        • Lawson D.L.
        • Morrison W.E.
        • Fairweather I.
        Electromechanical delay in isometric muscle contractions evoked by voluntary, reflex and electrical stimulation.
        Eur J Appl Physiol. 1995; 70: 138-145
        • Bawa P.
        • Chalmers G.R.
        • Jones K.E.
        • Sogaard K.
        • Walsh M.L.
        Control of the wrist joint in humans.
        Eur J Appl Physiol. 2000; 83: 116-127
        • Aymard C.
        • Decchi B.
        • Katz R.
        Recurrent inhibition between motor nuclei innervating opposing wrist muscles in human upper limb.
        J Physiol. 1997; 499: 267-282
        • Wargon I.
        • Lamy J.C.
        • Baret M.
        The disynaptic group I inhibition between wrist flexors and extensor muscles revisited in humans.
        Exp Brain Res. 2006; 168: 203-217
        • Sharman M.J.
        • Cresswell A.G.
        • Riek S.
        Proprioceptive neuromuscular facilitation stretching. Mechanisms and clinical implication.
        Sports Med. 2006; 36: 929-939
        • Chalmers G.R.
        • Bawa P.
        Synaptic connections from large afferents of wrist flexors and extensors to synergistic motoneurons in man.
        Exp Brain Res. 1997; 116: 351-358
        • Karagiannopoulos C.
        • Sitler M.
        • Michlovitz S.
        • Tucker C.
        • Tierney R.
        Responsiveness of the Active Wrist Joint Position Sense Test Following Distal Radius Fracture Intervention.
        Temple University, Philadelphia, PA2014 ([dissertation])
        • Riemann B.L.
        • Myers J.B.
        • Lephard S.M.
        Sensorimotor system measurement techniques.
        J Athl Train. 2002; 37: 85-98
        • Carey L.M.
        • Oke L.E.
        • Matyas T.A.
        Impaired limb position sense after stroke: a quantitative test for clinical use.
        Arch Phys Med Rehabil. 1996; 77: 1271-1278
        • Carey L.M.
        • Matyas T.A.
        • Oke L.E.
        Evaluation of impaired fingertip texture discrimination and wrist position sense in patients affected by stroke: comparison of clinical and new quantitative measures.
        J Hand Ther. 2002; 15: 71-82
        • Werner F.W.
        • Palmer A.K.
        • Somerset J.H.
        • et al.
        Wrist joint motion simulator.
        J Orthop Res. 1996; 14: 639-646
        • Solgaard S.
        • Petersen V.S.
        Epidemiology of distal radius fractures.
        Acta Orthop Scand. 1985; 56: 391-393
        • Vogt M.T.
        • Cauley J.A.
        • Tomaino M.M.
        • Stone K.
        • Williams J.R.
        • Herndon J.H.
        Distal radius fracture in older women: a 10-year follow-up study of descriptive characteristics and risk factors. The study of osteoporotic fractures.
        J Am Geriatr Soc. 2002; 50: 97-103
        • MacDermid J.C.
        • Richards R.S.
        • Roth J.H.
        Distal radius fracture: a prospective outcome study of 275 patients.
        J Hand Ther. 2001; 14: 154-169
        • Harris J.E.
        • MacDermid J.C.
        • Roth J.
        The international classification of functioning as an explanatory model of health after distal radius fracture: a cohort study.
        Health Qual Life Outcomes. 2005; 3: 73
        • Grewal R.
        • MacDermid J.C.
        • Pope J.
        • Chesworth B.M.
        Baseline predictors of pain and disability one year following extra-articular distal radius fractures.
        Hand. 2007; 2: 104-111
        • MacDermid J.C.
        • Donner A.
        • Richards R.S.
        • Roth J.H.
        Patient versus injury factors as predictors of pain and disability six months after a distal radius fracture.
        J Clin Epidemiol. 2002; 55: 849-854
        • MacDermid J.C.
        • Roth J.H.
        • Richards R.S.
        Pain and disability reported in the year following a distal radius fracture: a cohort study.
        BMC Musculoskelet Disord. 2003; 4: 24-37
        • Tremayne A.
        • Taylor N.
        • McBurney H.
        • Baskus K.
        Correlation of impairment and activity limitation after wrist fracture.
        Physiother Res Int. 2002; 7: 90-99
        • Goldhahn J.
        • Angst F.
        • Simmen B.R.
        What counts: outcome assessment after distal radius fractures in aged patients.
        J Orthop Trauma. 2008; 22: S126-S130
        • LaStayo P.
        • Hartzel J.
        Dynamic versus static grip strength: how grip strength changes when the wrist is moved, and why dynamic grip strength may be a more functional measurement.
        J Hand Ther. 1999; 12: 212-218
        • McKay S.D.
        • MacDermid J.C.
        • Roth J.H.
        • Richards R.S.
        Assessment of complications of distal radius fractures and development of a complication checklist.
        J Hand Surg Am. 2001; 26: 916-922
        • Garcia-Elias M.
        Carpal Instability. Rehabilitation of the Hand and Upper Extremity.
        6th ed. Mosby, Inc, Philadelphia, PA2011
        • Forward D.P.
        • Lindau T.R.
        • Melsom D.S.
        Intercarpal ligament injuries associated with fractures of the distal part of the radius.
        J Bone Joint Surg Am. 2007; 89: 2334-2340
        • Gunal I.
        • Ozaksoy D.
        • Altay T.
        • Satoglu I.S.
        • Kazimoglu C.
        • Sener M.
        Scapholunate dissociation associated with distal radius fractures.
        Eur J Orthop Surg Traumatol. 2013; 23: 877-881
        • Salva G.
        • Garcia-Elias M.
        Role of Muscles in Carpal Stability.
        ASSH/ASHT Combined Meeting, San Francisco, CA2009
        • Crisco J.J.
        • Coburn J.C.
        • Moore D.C.
        • et al.
        In vivo kinematics and the dart thrower's motion.
        J Bone Joint Surg Am. 2005; 87: 2729-2740
        • Calfee R.P.
        • Leventhal E.L.
        • Wilkerson J.
        • et al.
        Simulated radioscapholunate fusion alters carpal kinematics while preserving dart-throwers motion.
        J Hand Surg Am. 2008; 33: 503-510
        • Werner F.W.
        • Green J.K.
        • Short W.H.
        • Masaoka S.
        Scaphoid and lunate motion during a wrist dart throw motion.
        J Hand Surg Am. 2004; 29: 418-422
        • Moritomo H.
        • Apergis E.P.
        • Herzberg G.
        • Werner F.W.
        • Wolfe S.W.
        • Garcia-Elias M.
        2007 IFSSH committee report of wrist biomechanics committee: biomechanics of the so-called dart throwing motion of the wrist.
        J Hand Surg Am. 2007; 32: 1447-1453
        • Bednar J.M.
        The Distal Radioulnar Joint. Rehabilitation of the Hand and Upper Extremity.
        6th ed. Mosby, Inc, Philadelphia, PA2011
        • Leon-Lopez M.M.
        • Salva-Coll G.
        • Garcia-Elias M.
        • Lluch-Bergada A.
        • Llusa-Perez M.
        Role of the extensor carpi ulnaris in the stabilization of the lunotriquetral joint. An experimental study.
        J Hand Ther. 2013; 26: 312-316
        • Kihara H.
        • Short W.H.
        • Werner F.W.
        • Fortino M.D.
        • Palmer A.K.
        The stabilizing mechanism of the distal radioulnar joint during pronation and supination.
        J Hand Surg Am. 1995; 20: 930-936
        • Hagert E.
        • Hagert C.G.
        Understanding stability of the distal radioulnar joint through an understanding of its anatomy.
        Hand Clin. 2010; 26: 459-466
        • Myers J.B.
        • Wassinger C.A.
        • Lephart S.M.
        Sensorimotor contribution to shoulder stability: effect of injury and rehabilitation.
        Man Ther. 2006; 11: 197-201
        • Swanik K.A.
        • Lephart S.M.
        • Swanik C.B.
        • et al.
        The effects of shoulder plyometric training on proprioception and selected muscle performance characteristics.
        J Shoulder Elbow Surg. 2002; 11: 579-586
        • Fitzgerald G.K.
        • Axe M.J.
        • Snyder-Mackler L.
        The efficacy of perturbation training in nonoperative anterior cruciate ligament rehabilitation programs for physical active individuals.
        Phys Ther. 2000; 80: 128-140
        • Chmielewski T.L.
        • Hurd W.J.
        • Rudolph K.S.
        • Axe M.J.
        • Snyder-Mackler L.
        Perturbation training improves knee kinematics and reduces muscle co-contraction after complete unilateral anterior cruciate ligament rupture.
        Phys Ther. 2005; 85: 740-749
        • Swanik C.B.
        • Lephart S.M.
        • Giannantonio F.P.
        • Fu F.H.
        Reestablishing proprioception and neuromuscular control in the ACL-injured athlete.
        J Sport Rehabil. 1997; 6: 182-206
        • Hoffman M.
        • Payne V.G.
        The effects of proprioceptive ankle disk training on healthy subjects.
        J Orthop Sports Phys Ther. 1995; 21: 90-93
        • Richie Jr., D.H.
        Functional instability of the ankle and the role of neuromuscular control: a comprehensive review.
        J Foot Ankle Surg. 2001; 40: 240-251
        • Altschuler E.L.
        • Hu J.
        Mirror therapy in a patient with a fractured wrist and no active wrist extension.
        Scand J Plast Reconstr Surg Hand Surg. 2008; 42: 110-111
        • Foell J.
        • Bekrater-Bodmann R.
        • Diers M.
        • Flor H.
        Mirror therapy for phantom limb pain: brain changes and the role of body representation.
        Eur J Pain. 2014; 18: 729-739
        • Cordo P.J.
        • Gurfinkel V.S.
        • Brumagne S.
        • Flore-Voera C.
        Effect of slow, small movement on the vibration-evoked kinesthetic illusion.
        Exp Brain Res. 2005; 167: 324-334
        • White O.
        • Proske U.
        Illusions of forearm displacement during vibration of elbow muscles in humans.
        Exp Brain Res. 2009; 192: 113-120
        • Naito E.
        • Ehrsson H.H.
        Kinesthetic illusion of wrist movement activates motor-related areas.
        Neuroreport. 2001; 12: 3805-3809
        • Watson H.
        • Carlson L.
        Treatment of reflex sympathetic dystrophy of the hand with an active “stress loading” program.
        J Hand Ther Am. 1987; 12: 779-785
        • Rosen B.
        • Lundborg G.
        Training with a mirror in rehabilitation of the hand.
        Scand J Plast Reconstr Surg Hand Surg. 2005; 39: 104-108
        • Ezendam D.
        • Bongers R.M.
        • Jannink M.J.A.
        Systematic review of the effectiveness of mirror therapy in upper extremity function.
        Disabil Rehab. 2009; 31: 2135-2149
        • Deconinck F.J.
        • Smorenburg A.R.
        • Benham A.
        • Ledebt A.
        • Feltham M.G.
        • Savelsbergh G.J.
        Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain.
        Neurorehabil Neural Repair. 2015; 29: 349-361
        • Michlovitz S.
        • Festa L.
        Therapist's Management of Distal Radius Fractures. Rehabilitation of the Hand and Upper Extremity.
        6th ed. Mosby, Inc, Philadelphia, PA2011
        • Handoll H.H.G.
        • Madhok R.
        • Howe T.E.
        Rehabilitation for distal radial fractures in adults.
        Cochrane Database Syst Rev. 2006; : CD003324
        • Skirven T.M.
        Rehabilitation for Carpal Ligament Injury and Instability. Rehabilitation of the Hand and Upper Extremity.
        6th ed. Mosby, Inc, Philadelphia, PA2011
        • Kasai T.
        • Kawai S.
        • Kawanishi M.
        • Yahagi S.
        Evidence for facilitation of motor evoked potentials (MEPs) induced by motor imagery.
        Brain Res. 1997; 744: 147-150
        • Jeannerod M.
        • Frak V.
        Mental imaging of motor activity in humans.
        Curr Opin Neurobiol. 1999; 9: 735-739
        • Sabaté M.
        • González B.
        • Rodrı́guez M.
        Brain lateralization of motor imagery: motor planning asymmetry as a cause of movement lateralization.
        Neuropsychologia. 2004; 8: 1041-1049
        • Carroll T.J.
        • Herbert R.D.
        • Munn J.
        • Lee M.
        • Gandevia S.C.
        Contralateral effects of unilateral strength training: evidence and possible mechanisms.
        J Appl Physiol. 2006; 101: 1514-1522
        • Lee M.
        • Gandevia S.C.
        • Carroll T.J.
        Unilateral strength training increases voluntary activation of the opposite untrained limb.
        Clin Neurophysiol. 2009; 120: 802-808
        • Naito E.
        • Roland P.E.
        • Ehrsson H.H.
        I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement.
        Neuron. 2002; 36: 979-988
        • Diers M.
        • Christmann C.
        • Koeppe C.
        • Ruf M.
        • Flor H.
        Mirrored, imagined and executed movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain.
        Pain. 2010; 149: 296-304
        • Prosser R.
        • Herbert R.
        • LaStayo P.C.
        Current practice in the diagnosis and treatment of carpal instability—results of a survey of Australian hand therapists.
        J Hand Ther. 2007; 20: 239-242
        • Leger A.B.
        • Milner T.E.
        Muscle function at the wrist after eccentric exercise.
        Med Sci Sports Exerc. 2001; 33: 612-620
        • Balan S.A.
        • Garcia-Elias M.
        Utility of the Powerball in the invigoration of the musculature of the forearm.
        Hand Surg. 2008; 13: 79-83

      JHT Read for Credit

      Quiz: #417

      Record your answers on the Return Answer Form found on the tear-out coupon at the back of this issue or to complete online and use a credit card, go to JHTReadforCredit.com. There is only one best answer for each question.
      • #1.
        The design of the study was a
        • a.
          retrospective cohort
        • b.
          prospective cohort
        • c.
          case series
        • d.
          systematic review
      • #2.
        The JPS has been determined to be the most clinically useful test in assessing _____________ following DRF
        • a.
          grip-release function
        • b.
          the DTM
        • c.
          strength of the ECRB and FCR
        • d.
          sensori-motor status
      • #3.
        With the patient blinded the JPS asks the patient to
        • a.
          actively reproduce a specific grip strength on the Jamar dynomometer
        • b.
          actively go through the full arc of the DTM
        • c.
          actively reproduce a specific joint angle
        • d.
          passively reproduce a specific joint angle
      • #4.
        The study revealed a high correlation between
        • a.
          type 4 Frykman fractures and increased JPS deficits
        • b.
          pain and increased JPS deficits
        • c.
          DRF and CTS
        • d.
          DRF and S-L ligament injury
      • #5.
        Prior to this study there was no solid evidence of the responsiveness of the JPS. This study demonstrated its responsiveness
        • a.
          true
        • b.
          false
      When submitting to the HTCC for re-certification, please batch your JHT RFC certificates in groups of 3 or more to get full credit.